Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 725
Filtrar
1.
Int J Oral Sci ; 16(1): 22, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429281

RESUMO

Endodontic diseases are a kind of chronic infectious oral disease. Common endodontic treatment concepts are based on the removal of inflamed or necrotic pulp tissue and the replacement by gutta-percha. However, it is very essential for endodontic treatment to debride the root canal system and prevent the root canal system from bacterial reinfection after root canal therapy (RCT). Recent research, encompassing bacterial etiology and advanced imaging techniques, contributes to our understanding of the root canal system's anatomy intricacies and the technique sensitivity of RCT. Success in RCT hinges on factors like patients, infection severity, root canal anatomy, and treatment techniques. Therefore, improving disease management is a key issue to combat endodontic diseases and cure periapical lesions. The clinical difficulty assessment system of RCT is established based on patient conditions, tooth conditions, root canal configuration, and root canal needing retreatment, and emphasizes pre-treatment risk assessment for optimal outcomes. The findings suggest that the presence of risk factors may correlate with the challenge of achieving the high standard required for RCT. These insights contribute not only to improve education but also aid practitioners in treatment planning and referral decision-making within the field of endodontics.


Assuntos
Materiais Restauradores do Canal Radicular , Tratamento do Canal Radicular , Humanos , Consenso , Tratamento do Canal Radicular/métodos , Guta-Percha/uso terapêutico , Necrose da Polpa Dentária/tratamento farmacológico , Retratamento , Cavidade Pulpar , Materiais Restauradores do Canal Radicular/uso terapêutico , Preparo de Canal Radicular
2.
Int J Oral Sci ; 16(1): 23, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429299

RESUMO

Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes. Additionally, ambiguous clinical indications for root canal medication and non-standardized dressing protocols must be clarified. Inappropriate intracanal medication may present side effects and jeopardize the therapeutic outcomes. Indeed, clinicians have been aware of these concerns for years. Based on the current evidence of studies, this article reviews the properties of various irrigants and intracanal medicaments and elucidates their effectiveness and interactions. The evolution of different kinetic irrigation methods, their effects, limitations, the paradigm shift, current indications, and effective operational procedures regarding intracanal medication are also discussed. This expert consensus aims to establish the clinical operation guidelines for root canal irrigation and a position statement on intracanal medication, thus facilitating a better understanding of infection control, standardizing clinical practice, and ultimately improving the success of endodontic therapy.


Assuntos
Controle de Infecções , Tratamento do Canal Radicular , Consenso
3.
Appl Microbiol Biotechnol ; 108(1): 244, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421461

RESUMO

Candida albicans, one of the most prevalent conditional pathogenic fungi, can cause local superficial infections and lethal systemic infections, especially in the immunocompromised population. Secretory immunoglobulin A (sIgA) is an important immune protein regulating the pathogenicity of C. albicans. However, the actions and mechanisms that sIgA exerts directly against C. albicans are still unclear. Here, we investigated that sIgA directs against C. albicans hyphal growth and virulence to oral epithelial cells. Our results indicated that sIgA significantly inhibited C. albicans hyphal growth, adhesion, and damage to oral epithelial cells compared with IgG. According to the transcriptome and RT-PCR analysis, sIgA significantly affected the ergosterol biosynthesis pathway. Furthermore, sIgA significantly reduced the ergosterol levels, while the addition of exogenous ergosterol restored C. albicans hyphal growth and adhesion to oral epithelial cells, indicating that sIgA suppressed the growth of hyphae and the pathogenicity of C. albicans by reducing its ergosterol levels. By employing the key genes mutants (erg11Δ/Δ, erg3Δ/Δ, and erg3Δ/Δ erg11Δ/Δ) from the ergosterol pathway, sIgA lost the hyphal inhibition on these mutants, while sIgA also reduced the inhibitory effects of erg11Δ/Δ and erg3Δ/Δ and lost the inhibition of erg3Δ/Δ erg11Δ/Δ on the adhesion to oral epithelial cells, further proving the hyphal repression of sIgA through the ergosterol pathway. We demonstrated for the first time that sIgA inhibited C. albicans hyphal development and virulence by affecting ergosterol biosynthesis and suggest that ergosterol is a crucial regulator of C. albicans-host cell interactions. KEY POINTS: • sIgA repressed C. albicans hyphal growth • sIgA inhibited C. albicans virulence to host cells • sIgA affected C. albicans hyphae and virulence by reducing its ergosterol levels.


Assuntos
Candida albicans , Células Epiteliais , Virulência , Candida albicans/genética , Ergosterol , Imunoglobulina A Secretora
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 31-38, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322519

RESUMO

Alveolar bone, the protruding portion of the maxilla and the mandible that surrounds the roots of teeth, plays an important role in tooth development, eruption, and masticatory performance. In oral inflammatory diseases, including apical periodontitis, periodontitis, and peri-implantitis, alveolar bone defects cause the loosening or loss of teeth, impair the masticatory function, and endanger the physical and mental health of patients. However, alveolar bone restoration is confronted with great clinical challenges due to the the complicated effect of the biological, mechanical, and chemical factors in the oral microenvironment. An in-depth understanding of the underlying molecular regulatory mechanisms will contribute to the exploration of new targets for alveolar bone restoration. Recent studies have shown that Notch, Wnt, Toll-like receptor (TLR), and nuclear factor-κB (NF-κB) signaling pathways regulate the proliferation, differentiation, apoptosis, and autophagy of osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, and adaptive immune cells, modulate the expression of inflammatory mediators, affect the balance of the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) system, and ultimately participate in alveolar bone restoration. Additionally, alveolar bone restoration involves AMP-activated protein kinase (AMPK), phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT), Hippo/YAP, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and transforming growth factor ß (TGF-ß) signaling pathways. However, current studies have failed to construct mature molecular regulatory networks for alveolar bone restoration. There is an urgent need for further research on the molecular regulatory mechanisms of alveolar bone restoration by using new technologies such as single-cell transcriptome sequencing and spatial transcriptome sequencing.


Assuntos
NF-kappa B , Fosfatidilinositol 3-Quinases , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacologia , Osso e Ossos/metabolismo , Transdução de Sinais , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Ligante RANK/farmacologia
5.
Int J Oral Sci ; 16(1): 11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302479

RESUMO

ABSTARCT: Odontogenic maxillary sinusitis (OMS) is a subtype of maxillary sinusitis (MS). It is actually inflammation of the maxillary sinus that secondary to adjacent infectious maxillary dental lesion. Due to the lack of unique clinical features, OMS is difficult to distinguish from other types of rhinosinusitis. Besides, the characteristic infectious pathogeny of OMS makes it is resistant to conventional therapies of rhinosinusitis. Its current diagnosis and treatment are thus facing great difficulties. The multi-disciplinary cooperation between otolaryngologists and dentists is absolutely urgent to settle these questions and to acquire standardized diagnostic and treatment regimen for OMS. However, this disease has actually received little attention and has been underrepresented by relatively low publication volume and quality. Based on systematically reviewed literature and practical experiences of expert members, our consensus focuses on characteristics, symptoms, classification and diagnosis of OMS, and further put forward multi-disciplinary treatment decisions for OMS, as well as the common treatment complications and relative managements. This consensus aims to increase attention to OMS, and optimize the clinical diagnosis and decision-making of OMS, which finally provides evidence-based options for OMS clinical management.


Assuntos
Sinusite Maxilar , 60523 , Humanos , Sinusite Maxilar/diagnóstico por imagem , Sinusite Maxilar/etiologia , Sinusite Maxilar/terapia , Consenso , Seio Maxilar , Odontogênese
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 53-59, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322539

RESUMO

Objective: To investigate the effects of stromal cell-derived factor 1α (SDF-1α) on the apoptosis and autophagy of chondrocytes and the underlying mechanisms. Methods: Chondrocytes were isolated from the knee joints of neonatal mice. The chondrocytes were then stimulated with 0 (the control group), 50, 100, and 200 ng/mL of SDF-1α. CCK-8 assay was performed to determine the effects of SDF-1α stimulation for 24 h, 48 h, and 72 h on the viability of the chondrocytes. Wound healing assay was conducted to determine the effects of SDF-1α stimulation for 12 h and 24 h on chondrocyte migration. The changes in the expression of Akt signaling pathway proteins in chondrocytes were determined by Western blot assay. Chondrocytes were stimulated with 0 (the control group) and 200 ng/mL of SDF-1α. Flow cytometry was performed to determine the effect of SDF-1α on the apoptosis of chondrocytes. Transmission electron microscope was used to examine the effect of SDF-1α on chondrocyte autophagy. Immunofluorescence staining assays were performed to visualize the differences in p-Akt expression and distribution in chondrocytes treated with SDF-1α. Results: Compared with the control group, findings for the experimental groups showed that SDF-1α at the concentrations of 50, 100, and 200 ng/mL did not decrease chondrocyte activity at any time point (P<0.01) and it consistently promoted chondrocyte migration at 24 h (P<0.05). Western blot results revealed that, in comparison to the control group, SDF-1α at concentrations of 50, 100, and 200 ng/mL significantly up-regulated the protein expression of p-Akt in chondrocytes, while no significant difference in Akt expression was observed. Flow cytometry demonstrated that SDF-1α could inhibit chondrocyte apoptosis (P<0.05) and transmission electron microscopic observation showed that SDF-1α promoted chondrocyte autophagy (P<0.05). Immunofluorescence staining showed that the expression of p-Akt in chondrocytes was concentrated in the perinuclear area of the cells and this expression was further enhanced in the perinuclear area of the chondrocytes after treatment with SDF-1α. Conclusion: SDF-1α inhibits chondrocyte apoptosis and promotes chondrocyte migration and autophagy through activating the Akt signaling pathway.


Assuntos
Apoptose , Autofagia , Quimiocina CXCL12 , Condrócitos , Animais , Camundongos , Quimiocina CXCL12/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
7.
J Oral Microbiol ; 16(1): 2292539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405599

RESUMO

Oral microecological balance is closely associated with the development of dental caries. Oxidative stress is one of the important factors regulating the composition and structure of the oral microbial community. Streptococcus mutans is linked to the occurrence and development of dental caries. The ability of S. mutans to withstand oxidative stress affects its survival competitiveness in biofilms. The oxidative stress regulatory mechanisms of S. mutans include synthesis of reductase, regulation of metal ions uptake, regulator PerR, transcription regulator Spx, extracellular uptake of glutathione, and other related signal transduction systems. Here, we provide an overview of how S. mutans adapts to oxidative stress and its influence on oral microecology, which may offer novel options to investigate the cariogenic mechanisms of S. mutans in the oral microenvironment, and new targets for the ecological prevention and treatment of dental caries.

8.
Regen Biomater ; 11: rbae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414799

RESUMO

Dental caries is one of the most prevalent and biofilm-associated oral diseases in humans. Streptococcus mutans, with a high ability to form biofilms by adhering to hard surfaces, has been established as an important etiological agent for dental caries. Therefore, it is crucial to find a way to prevent the formation of cariogenic biofilm. Here, we report an electrospun fibrous membrane that could inhibit the adhesion and biofilm formation of S. mutans. Also, the polystyrene (PS)/polyvinyl pyrrolidone (PVP) electrospun fibrous membrane altered the 3D biofilm architecture and decreased water-insoluble extracellular polysaccharide production. Notably, the anti-adhesion mechanism which laid in Coulomb repulsion between the negatively charged PS/PVP electrospun fibrous membrane and S. mutans was detected by zeta potential. Furthermore, metagenomics sequencing analysis and CCK-8 assay indicated that PS/PVP electrospun fibrous membrane was microbiome-friendly and displayed no influence on the cell viability of human gingival epithelial cells and human oral keratinocytes. Moreover, an in vitro simulation experiment demonstrated that PS/PVP electrospun fibrous membrane could decrease colony-forming unit counts of S. mutans effectively, and PS/PVP electrospun fibrous membrane carrying calcium fluoride displayed better anti-adhesion ability than that of PS/PVP electrospun fibrous membrane alone. Collectively, this research showed that the PS/PVP electrospun fibrous membrane has potential applications in controlling and preventing dental caries.

9.
Aust Endod J ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361279

RESUMO

This study investigated the root canal morphology of fused-rooted mandibular second molars based on the pulp chamber floor (PCF) and analysed the correlation between the external morphology of the radicular groove, and the internal morphology of the PCF and root canal configuration. A total of 291 fused-rooted teeth collected from the Chinese population were scanned using micro-computed tomography and a dental operating microscope was used for observing the PCFs. The classification of the PCF and root canal configuration were identified according to modified Min et al.'s and Gao et al.'s classifications, respectively. Additionally, a new radicular groove classification was proposed. The correlation among these morphological characteristics was investigated using the chi-square test and Fisher's exact test (p < 0.05). The results showed that 74.2% of teeth had C-shaped PCFs, while 21.0% had non-C-shaped PCFs. As for the root canal configurations, 37.5% of teeth were merging type, 40.9% were symmetrical type, and 14.8% were asymmetrical type. Statistical analysis revealed a significant correlation between the PCF types and the root canal configurations (p < 0.001). The dominant root canal types for teeth with C-shaped PCFs were merging and symmetrical types, while the asymmetrical type was not identified in non-C-shaped PCFs. In addition, significant morphological association between the root canals and radicular grooves was also revealed (p < 0.001). Teeth with different PCF morphologies exhibit specific patterns of root canal category distribution. Understanding the morphological nuances of the root canal based on the PCF can assist clinicians in predicting and identifying the canal configuration beneath the visible orifice.

10.
J Mater Chem B ; 12(8): 2158-2179, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323437

RESUMO

The repair of mandibular defects is a challenging clinical problem, and associated infections often hinder the treatment, leading to failure in bone regeneration. Herein, a multifunctional platform is designed against the shortages of existing therapies for infected bone deficiency. 2D Ti3C2 MXene and berberine (BBR) are effectively loaded into 3D printing biphasic calcium phosphate (BCP) scaffolds. The prepared composite scaffolds take the feature of the excellent photothermal capacity of Ti3C2 as an antibacterial, mediating NIR-responsive BBR release under laser stimuli. Meanwhile, the sustained release of BBR enhances its antibacterial effect and further accelerates the bone healing process. Importantly, the integration of Ti3C2 improves the mechanical properties of the 3D scaffolds, which are beneficial for new bone formation. Their remarkable biomedical performances in vitro and in vivo present the outstanding antibacterial and osteogenic properties of the Ti3C2-BBR functionalized BCP scaffolds. The synergistic therapy makes it highly promising for repairing infected bone defects and provides insights into a wide range of applications of 2D nanosheets in biomedicine.


Assuntos
Berberina , Hidroxiapatitas , Nitritos , Tecidos Suporte , Elementos de Transição , Berberina/farmacologia , Regeneração Óssea , Antibacterianos/farmacologia , Impressão Tridimensional
11.
Br J Pharmacol ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38382564

RESUMO

BACKGROUND AND PURPOSE: The holotoxin A1 , isolated from Apostichopus japonicus, exhibits potent antifungal activities, but the mechanism and efficacy against candidiasis are unclear. In this study we have studied the antifungal effects and mechanism of holotoxin A1 against Candida albicans and in murine oropharyngeal and intra-abdominal candidiasis. EXPERIMENTAL APPROACH: The antifungal effect of holotoxin A1 against C. albicans was tested in vitro. To explore the antifungal mechanism of holotoxin A1 , the transcriptome, ROS levels, and mitochondrial function of C. albicans was evaluated. Effectiveness and systematic toxicity of holotoxin A1 in vivo was assessed in the oropharyngeal and intra-abdominal candidiasis models in mice. KEY RESULTS: Holotoxin A1 was a potent fungicide against C. albicans SC5314, clinical strains and drug-resistant strains. Holotoxin A1 inhibited oxidative phosphorylation and induced oxidative damage by increasing intracellular accumulation of ROS in C. albicans. Holotoxin A1 induced dysfunction of mitochondria by depolarizing the mitochondrial membrane potential and reducing the production of ATP. Holotoxin A1 directly inhibited the enzymatic activity of mitochondrial complex I and antagonized with the rotenone, an inhibitor of complex I, against C. albicans. Meanwhile, the complex I subunit NDH51 null mutants showed a decreased susceptibility to holotoxin A1 . Furthermore, holotoxin A1 significantly reduced fungal burden and infections with no significant systemic toxicity in oropharyngeal and intra-abdominal candidiasis in murine models. CONCLUSION AND IMPLICATIONS: Holotoxin A1 is a promising candidate for the development of novel antifungal agents against both oropharyngeal and intra-abdominal candidiasis, especially when caused by drug-resistant strains.

12.
Int Endod J ; 57(5): 549-565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332717

RESUMO

AIM: To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY: Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS: PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS: This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.


Assuntos
Polpa Dentária , Fator de Crescimento Derivado de Plaquetas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Conexina 43/metabolismo , Fosfatidilinositol 3-Quinases , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Regeneração , Células-Tronco/metabolismo
13.
BMC Oral Health ; 24(1): 59, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195500

RESUMO

BACKGROUND: Calcium hydroxide [Ca(OH)2] is widely accepted as a biocompatible interappointment intracanal medicament. This study aimed to analyze the efficacy of Ca(OH)2 placement into the C-shaped canal system of mandibular second molars using the syringe method with and without lentulo spiral utilizing micro-computed tomography (micro-CT). METHODS: Twenty-four extracted mandibular second molars were instrumented and classified into C-shaped floors (n = 12) and non-C-shaped floors (n = 12). Both groups were placed with Ca(OH)2 using the syringe system, then all teeth were scanned and cleaned, and placed with Ca(OH)2 again but with the syringe system followed by lentulo spiral and rescanned. The specimens were scanned using micro-CT to analyze the volume, volume percentage, uncontacted surface area, and uncontacted surface area percentage of Ca(OH)2 with the two delivery methods in the entire canal and at the apical 4 mm of the canal. Mann-Whitney test and Wilcoxon signed-rank test were used to determine the statistical differences among the groups. RESULTS: Syringe administration used in conjunction with lentulo spiral presented lower uncontacted surface area, a lower percentage of uncontacted surface area, larger volume, and a higher percentage of volume than syringe without lentulo spiral (P < 0.05). There was no significant difference between the C-shaped floor group and the non-C-shaped floor group (P > 0.05) in the Ca(OH)2 uncontacted surface area, volume, and percentages at different regions of canals and among different delivery techniques groups. CONCLUSIONS: The lentulo spiral and syringe technique combination can increase the volume and contacted surface area of Ca(OH)2 in the C-shaped canal system of mandibular second molars.


Assuntos
Hidróxido de Cálcio , Dente Molar , Humanos , Microtomografia por Raio-X , Hidróxido de Cálcio/uso terapêutico , Dente Molar/diagnóstico por imagem , Cavidade Pulpar/diagnóstico por imagem
14.
Mol Oral Microbiol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212261

RESUMO

Streptococcus mutans is the major etiological agent of dental caries in humans. S. mutans overgrowth within dental biofilms can trigger biofilm dysbiosis, ultimately leading to the initiation or progression of dental caries. Polyketides and nonribosomal peptides (PKs/NRPs) are secondary metabolites with complex structures encoded by a cluster of biosynthetic genes. Although not essential for microbial growth, PKs/NRPs play important roles in physiological regulation. Three main classes of hybrid PKs/NRPs in S. mutans have been identified, including mutanobactin, mutanocyclin, and mutanofactin, encoded by the mub, muc, and muf gene clusters, respectively. These three hybrid PKs/NRPs play important roles in environmental adaptation, biofilm formation, and interspecies competition of S. mutans. In this review, we provide an overview of the major hybrid PKs/NRPs of S. mutans, including mutanobactin, mutanocyclin, and mutanofactin and address their ecological roles in dental biofilms. We place specific emphasis on important questions that are yet to be answered to provide novel insights into the cariogenic mechanism of S. mutans and facilitate improved management of dental caries. We highlight that S. mutans PKs/NRPs may be potential novel targets for the prevention and treatment of S. mutans-induced dental caries. The development of genomics, metabolomics, and mass spectrometry, together with the integration of various databases and bioinformatics tools, will allow the identification and synthesis of other secondary metabolites. Elucidating their physicochemical properties and their ecological roles in oral biofilms is crucial in the identification of novel targets for the ecological management of dental caries.

15.
Mol Oral Microbiol ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197801

RESUMO

Periodontitis is a common oral bacterial infection characterized by inflammatory responses. Its high prevalence lowers the quality of life for individuals and increases the global economic and disease burden. As microorganisms in dental plaque are responsible for this oral disease, antibacterial drug treatments are effective strategies for preventing and treating periodontitis. In this study, we investigated the inhibitory effect of nicotinamide (NAM), a vitamin B3 derivative, on the growth and virulence of Porphyromonas gingivalis, a key member of the red complex. Our findings revealed that NAM inhibited bacterial growth and gingipain activities, which played a dominant role in protein hydrolysis and heme acquisition. NAM decreased hemagglutination and hemolysis abilities and changed hemin and hemoglobin binding capacities, controlling bacterial infection through a starvation strategy by blocking access to growth-essential nutrients from the outside and reducing bacterial virulence. Several experiments in an animal model showed the effectiveness of NAM in preventing alveolar bone loss and reducing inflammatory cell infiltration, shedding light on its potential therapeutic applicability.

16.
J Transl Med ; 22(1): 54, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218880

RESUMO

BACKGROUND: Epigenetic factors influence the odontogenic differentiation of dental pulp stem cells and play indispensable roles during tooth development. Some microRNAs can epigenetically regulate other epigenetic factors like DNA methyltransferases and histone modification enzymes, functioning as epigenetic-microRNAs. In our previous study, microarray analysis suggested microRNA-93-5p (miR-93-5p) was differentially expressed during the bell stage in human tooth germ. Prediction tools indicated that miR-93-5p may target lysine-specific demethylase 6B (KDM6B). Therefore, we explored the role of miR-93-5p as an epi-miRNA in tooth development and further investigated the underlying mechanisms of miR-93-5p in regulating odontogenic differentiation and dentin formation. METHODS: The expression pattern of miR-93-5p and KDM6B of dental pulp stem cells (DPSCs) was examined during tooth development and odontogenic differentiation. Dual luciferase reporter and ChIP-qPCR assay were used to validate the target and downstream regulatory genes of miR-93-5p in human DPSCs (hDPSCs). Histological analyses and qPCR assays were conducted for investigating the effects of miR-93-5p mimic and inhibitor on odontogenic differentiation of hDPSCs. A pulpotomy rat model was further established, microCT and histological analyses were performed to explore the effects of KDM6B-overexpression and miR-93-5p inhibition on the formation of tertiary dentin. RESULTS: The expression level of miR-93-5p decreased as odontoblast differentiated, in parallel with elevated expression of histone demethylase KDM6B. In hDPSCs, miR-93-5p overexpression inhibited the odontogenic differentiation and vice versa. MiR-93-5p targeted 3' untranslated region (UTR) of KDM6B, thereby inhibiting its protein translation. Furthermore, KDM6B bound the promoter region of BMP2 to demethylate H3K27me3 marks and thus upregulated BMP2 transcription. In the rat pulpotomy model, KDM6B-overexpression or miR-93-5p inhibition suppressed H3K27me3 level in DPSCs and consequently promoted the formation of tertiary dentin. CONCLUSIONS: MiR-93-5p targets epigenetic regulator KDM6B and regulates H3K27me3 marks on BMP2 promoters, thus modulating the odontogenic differentiation of DPSCs and dentin formation.


Assuntos
Histonas , MicroRNAs , Humanos , Ratos , Animais , Histonas/metabolismo , Células-Tronco , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dentina , Células Cultivadas , Histona Desmetilases com o Domínio Jumonji/genética
17.
Mol Oral Microbiol ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224336

RESUMO

Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.

18.
Int J Oral Sci ; 15(1): 54, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052782

RESUMO

Digital guided therapy (DGT) has been advocated as a contemporary computer-aided technique for treating endodontic diseases in recent decades. The concept of DGT for endodontic diseases is categorized into static guided endodontics (SGE), necessitating a meticulously designed template, and dynamic guided endodontics (DGE), which utilizes an optical triangulation tracking system. Based on cone-beam computed tomography (CBCT) images superimposed with or without oral scan (OS) data, a virtual template is crafted through software and subsequently translated into a 3-dimensional (3D) printing for SGE, while the system guides the drilling path with a real-time navigation in DGE. DGT was reported to resolve a series of challenging endodontic cases, including teeth with pulp obliteration, teeth with anatomical abnormalities, teeth requiring retreatment, posterior teeth needing endodontic microsurgery, and tooth autotransplantation. Case reports and basic researches all demonstrate that DGT stand as a precise, time-saving, and minimally invasive approach in contrast to conventional freehand method. This expert consensus mainly introduces the case selection, general workflow, evaluation, and impact factor of DGT, which could provide an alternative working strategy in endodontic treatment.


Assuntos
Endodontia , Dente , Humanos , Consenso , Endodontia/métodos , Impressão Tridimensional , Assistência Odontológica , Tomografia Computadorizada de Feixe Cônico , Tratamento do Canal Radicular
20.
J Histotechnol ; : 1-11, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966852

RESUMO

With rates growing quickly with age, osteoarthritis (OA) is the most common cause of chronic disability in aging persons. The discomfort and reduced motion associated with osteoarthritis have a significant impact on quality of life, and there is no known solution. Runt-related transcription factor 1(Runx1) has been shown to play a protective role in the development of osteoarthritis by promoting chondrogenesis. We had created models of ageing mice with osteoarthritis by anterior cruciate ligament transection (ACLT) and analyzed the effects of intra-articular injection of adeno-associated virus/Runx1 (AAV/Runx1) on the models. The results showed that the AAV/Runx1-group maintained better articular cartilage integrity and retained more proteoglycan than the OA group after injection of AAV-Runx1. The markers related to pathological changes in cartilage were downregulated, while the markers related to physiological changes in cartilage were upregulated. This suggests that Runx1 may impede OA progression on the knee joint of ageing mice, potentially playing a protective role in OA and becoming a probable treatment target for osteoarthritis among ageing patients in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...